
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2005; 49:1261–1286
Published online 3 August 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/�d.1045

Finite element and implicit Runge–Kutta implementation of an
acoustics–convection upstream resolution algorithm for the

time-dependent two-dimensional Euler equations

Joe Iannelli∗;†;‡

Centre for Aeronautics; School of Engineering and Mathematical Sciences; City University;
Northampton Square; London EC1V 0HB; U.K.

SUMMARY

The second of a two-paper series, this paper details a solver for the characteristics-bias system from
the acoustics–convection upstream resolution algorithm for the Euler and Navier–Stokes equations. An
integral formulation leads to several surface integrals that allow e�ective enforcement of boundary con-
ditions. Also presented is a new multi-dimensional procedure to enforce a pressure boundary condition
at a subsonic outlet, a procedure that remains accurate and stable. A classical �nite element Galerkin
discretization of the integral formulation on any prescribed grid directly yields an optimal discretely
conservative upstream approximation for the Euler and Navier–Stokes equations, an approximation that
remains multi-dimensional independently of the orientation of the reference axes and computational cells.
The time-dependent discrete equations are then integrated in time via an implicit Runge–Kutta procedure
that in this paper is proven to remain absolutely non-linearly stable for the spatially-discrete Euler and
Navier–Stokes equations and shown to converge rapidly to steady states, with maximum Courant num-
ber exceeding 100 for the linearized version. Even on relatively coarse grids, the acoustics–convection
upstream resolution algorithm generates essentially non-oscillatory solutions for subsonic, transonic and
supersonic �ows, encompassing oblique- and interacting-shock �elds that converge within 40 time steps
and re�ect reference exact solutions. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper provides the second part of a two-part investigation into the development of contin-
uum, i.e. non-discrete, multi-dimensional and in�nite-directional characteristics-bias
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approximations of the Euler and Navier–Stokes equations and subsequent computational imple-
mentation. The �rst part [1], also presented in this journal, synthesizes and analyses via charac-
teristics the acoustic–convection upstream resolution algorithm. Detailing an
integral formulation, a �nite element discretization, and an implicit Runge–Kutta time in-
tegration, this paper presents computational results for inviscid two-dimensional subsonic,
transonic, and supersonic �ows with shock re�ections and interactions. In particular, the algo-
rithm allows re�ected shocks to cross out�ow boundaries unperturbed, without any spurious
distortion.
As its guiding principle, the acoustics convection upstream resolution algorithm develops

the upstream formulation in the continuum, directly at the partial di�erential equation level,
before the approximation of the spatial partial derivatives, so that a traditional centred ap-
proximation of the associate integral formulation automatically generates an upstream discrete
system for the Euler and Navier–Stokes equations. Associated with the Euler and Navier–
Stokes equations, the non-discrete formulation results in a ‘companion’ characteristics-bias
system that relies on a decomposition of the multi-dimensional Euler Jacobian into acoustics
and convection components. For any Mach number, the characteristics-bias system induces
consistent upwinding along every direction radiating from any �ow-�eld point [1]. The for-
mulation induces an anisotropic variable-strength upstream bias that directly correlates with
the multi-dimensional spatial distribution of characteristic velocities. The magnitudes of the
associated streamwise and cross�ow dissipations remain di�erent from and independent of
each other, with cross�ow dissipation that decreases for increasing Mach number. In this
manner the developed formulation will not generate for increasing Mach number as much
crosswind dissipation as induced by an isotropic or direction-split formulation.
This paper develops an integral formulation of the characteristics-bias system. This for-

mulation directly leads to several surface integrals that allow e�ective enforcement of wall-
tangency, pressure, surface-traction and heat-�ux boundary conditions for arbitrary geometric
shapes of the computational domain. In particular, these developments establish the stabil-
ity of the pressure boundary-condition enforcement method, which is then con�rmed by the
computed solutions.
A Galerkin �nite element is used to discretize in space the integral statement. A�ording

considerable geometric �exibility [2–4] and employing optimal metric data [5], this �nite ele-
ment implementation retains the ideal surface-integral venues in order accurately and e�ciently
to enforce several boundary conditions at solid walls and subsonic and supersonic outlets.
On arbitrary grids, this �nite element discretization of the integral formulation automatically
and directly generates a consistent, discretely conservative and genuinely multi-dimensional
upstream-bias approximation of the Euler and Navier–Stokes equations. The associated dis-
crete upstream-bias remains independent of the direction of the coordinate axes as well as
orientation of each computational-cell side, which obviates the need for rotated stencils. With
an operation count comparable to that of a simple �ux vector splitting algorithm, this ap-
proximation requires data only from the computational cells shared by each grid node and
also reduces to a consistent upstream approximation of the acoustics equations, for vanish-
ing Mach number, which addresses the challenging problem of calculating low-Mach-number
�ows. The developments in this study have employed basic Lagrange four-noded cells with-
out any MUSCL-type local extrapolation of dependent variables, in order to implement the
algorithm e�ciently and determine the ultimate accuracy of bi-linear approximations of �uxes
within four-noded cells.
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The formulation, furthermore, supplies a stable and intrinsically in�nite directional upstream-
bias that induces minimal di�usion for crisp oblique-shock capturing. The upstream directions
are continuously updated and high-rate convergence to machine zero achieved without addi-
tional shock-capturing terms, data �ltering or loss of essential monotonicity. The magnitude
of the induced upstream bias depends on local solution smoothness. Only at solution discon-
tinuities, e.g. a shock wave, is the induced upstreaming commensurate with a fully upwind
formulation. In regions of solution continuity, the upwind-bias reduces to a minimum, which
corresponds to minimal induced dissipation [6].
To integrate the discrete �nite element equations in time, this paper details an implicit

Runge–Kutta algorithm with analytically determined Jacobians. Generalizing previous contri-
butions [5, 7–9], this algorithm is proven in this paper absolutely non-linearly energy stable
for the spatially discrete Euler and Navier–Stokes system and shown to determine steady-state
�ows rapidly, within 40 time steps, with maximum Courant number exceeding 100 for the lin-
earized version. Based on this result, the stability of a CFD algorithm employing this implicit
Runge–Kutta integration is thus chie�y determined by the upstream-bias formulation, spatial
discretization, and boundary conditions, which should collectively generate a stable system of
ordinary di�erential equations in continuum time.
Because of size constraints, this paper presents results for two-dimensional inviscid �ows in

order to demonstrate the computational performance of the algorithm in a setting that is famil-
iar to a wide audience. A third paper is planned to present the three-dimensional formulation,
detail a memory-e�cient implementation of GMRES for solving the eventual numerical lin-
ear algebra problem, and discuss computational results for two- and three-dimensional viscous
�ows containing shock-wave boundary layer interactions and hypersonic bow shocks.
This paper is organized in seven sections. After the introductory remarks in Section 1,

Section 2 summarizes the multi-dimensional non-discrete upstream-bias approximation for the
Euler and Navier–Stokes equations. The integral formulation is described in Section 3, the
�nite element Galerkin spatial discretization is delineated in Section 4, and the Runge–Kutta
time integration algorithm is discussed in Section 5. Section 6 details the computational results,
with concluding remarks presented in Section 7.

2. NON-DISCRETE UPSTREAM-BIAS APPROXIMATION

As Reference [1] details, the non-discrete �ux Jacobian decomposition (FJD) upstream-bias
approximation is developed for the Euler and Navier–Stokes equations. With implied summa-
tion on repeated subscript indices, these equations can be abridged as the non-linear parabolic
system

@q
@t
+

@fj(q)
@xj

− @f�
j

@xj
=0 (1)

which reduces to the Euler hyperbolic system when the �uid-viscosity �ux f�
j identically

vanishes. For three-dimensional formulations, 16 j6 3, and with R denoting the real-number
�eld, the independent variable (x; t), x≡ (x1; x2; x3), in (1) varies in the domain D≡�×[to; tf],
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[to; tf] ⊂ R+, � ⊂ R3. Equivalent to this governing system is the integral statement∫
�̂
ŵ
(
@q
@t
+

@fj(q)
@xj

− @f�
j

@xj

)
d�=0 (2)

when it holds for arbitrary subdomains �̂ ⊆ � and test functions ŵ∈H1(�̂) ⊆ H1(�) with
compact support in �̂, [10–13].
The non-discrete formulation induces a multi-dimensional upstream-bias directly in the

continuum, at the partial-di�erential equation level, before the eventual discretization on a
prescribed grid. This continuum upstream-bias formulation derives from a characteristics-bias
integral statement associated with (1). With reference to (2), the characteristic-bias integral
is then de�ned as ∫

�̂
ŵ

(
@q
@t
+

@fCj
@xj

− @f�
j

@xj

)
d�=0 (3)

where fCj corresponds to a characteristics �ux that automatically induces within (3) a multi-
dimensional and in�nite directional upstream-bias approximation for the hyperbolic �ux
divergence @fj=@xj.
The acoustics–convection characteristics �ux divergence for the Euler �ux is expressed

as [1]

@fCj
@xj

=
@fj
@xj

− @
@xi

[
� 

(
c(�aiaj + �NaN

i aN
j )

@q
@xj

+ ai
@fq

j

@xj
+ ai�

@fp
j

@xj

)]
(4)

where fq
j and fp

j , respectively, denote the convection and pressure �ux components. For 2-D
�ows, these components are de�ned as

fj(q) =fq
j (q) + fp

j (q)

fq
j (q)≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

mj

mj

�
m1

mj

�
m2

mj

�
(E + p)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

mj

�
qH ≡ mj

�
·

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�

m1

m2

E + p

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
; fp

j (q)≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0

p�j
1

p�j
2

0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(5)

with straightforward generalization to 3-D �ows. In the array q, the variables �;m1; m2; E,
respectively, denote static density, volume-speci�c linear momentum components and total
energy, with c, p, and T representing speed of sound, static pressure, and static temperature
from the expressions

c2 =p� + pE

(
E + p

�
− 1

�2
(m2

1 +m2
2)
)
; p=(� − 1)

(
E − 1

2�
(m2

1 +m2
2)
)
; T =

p
�R

(6)
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where R denotes the gas constant. The Eulerian �ow velocity u, with Cartesian components
uj, 16 j6 2, is then de�ned as u≡m=�, with Mach number M ≡ ‖u‖=�. The non-negative
variables �,  , �, �N and �, each with magnitude not exceeding one, respectively, indicate a
reference length, upstream-bias controller, streamwise and cross�ow acoustic upstream func-
tions and pressure-gradient upstream function. The direction cosines ai, aN

i , 16 i6 2,
correspond to the components of unit vectors a, aN , respectively, in the direction of and
perpendicular to the local velocity vector. In result (4), the expressions (c�aiaj(@q=@xj) +
ai(@f

q
j =@xj) + ai�(@f

p
j =@xj)) and (c�NaN

i aN
j (@q=@xj)), determine the upstream biases within,

respectively, the streamline and cross�ow wave propagation regions.
The �rst paper of this series [1] shows that the upstream-bias functions �= �(M), �= �(M),

and �N = �N (M) are then directly and exactly determined as

�(M) = �1(M)− M; �(M)=
(�1(M)− �4(M))(�1(M)− �4(M) + pEM)

1 + pEM (�1(M)− �4(M))
(7)

�N (M)≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(�N ′

M MM − 2�N
M + 2)

(
M
MM

)3
− (�N ′

M MM − 3�N
M + 3)

(
M
MM

)2
+ 1; 06M¡MM

1
2

(
1 +

�M
MM −

√
M 2

M − 1

)
(M −

√
M 2 − 1); MM 6M

(8)

where superscript prime ‘′’ denotes di�erentiation with respect to M and subscripts ‘M ’ in
both �N ′

M and �N
M indicate their respective magnitudes from the second expression in (8) at

M =MM ≡ 1 + �M , �M = 1
5 . The streamline upstream-bias eigenvalues are expressed as

�1(M)≡

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1− M +
�M
2
(2M)1=�M ; 06M¡

1
2

(M − 1
2 )
2

2�M
+
1+ �M
2

;
1
2
6M¡

1
2
+ �M

M;
1
2
+ �M 6M

(9)

�4(M)≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1− M; 06M6 1− �M

(M − 1)2
2�M

+
�M
2

; 1− �M¡M¡1 + �M

M − 1; 1 + �M 6M

(10)

The acoustics–convection upstream-resolution algorithm is implemented via the following
steps. After calculating at each grid node the speed of sound c, Mach number M , and unit
vectors a, aN , the implementation computes the streamline eigenvalues �1 as well as �4 and
the upstream bias functions �, �, and �N . All of these terms then allow formulating the discrete
analogue of the characteristics-bias Euler �ux divergence (4).
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3. INTEGRAL FORMULATION AND BOUNDARY CONDITIONS

With the divergence (4) of the characteristics �ux fCj established, the integral formulation for
system (3), [10–13], seeks a solution q∈H1(�), subject to prescribed boundary conditions
on @�≡ ��\�, such that for all test functions w∈H1(�)

∫
�

[
w
(
@q
@t
+

@fj
@xj

)
+

@w
@xi

� 

(
c(�aiaj + �NaN

i aN
j )

@q
@xj

+ ai
@fq

j

@xj
+ ai�

@fp
j

@xj

)]
d�

+
∫
�

@w
@xj

f�
j d�−

∮
@�

wf�
j nj d�=0 (11)

The surface integral on @� corresponding to the characteristics-bias expression vanishes be-
cause of the boundary condition  (x@�)=0, imposed to eliminate unnecessary boundary up-
stream bias. In (11), the term nj denotes the jth component of the outward pointing unit
vector perpendicular to the boundary, as depicted in Figure 1. As well known, the continuity
equation within (11) remains the same for both inviscid and viscous �ows. For reference, this
equation becomes

∫
�

[
w
(
@�
@t
+

@mj

@xj

)
+

@w
@xi

� 
(
c(�aiaj + �NaN

i aN
j )

@�
@xj

+ ai
@mj

@xj

)]
d�=0 (12)

At an inlet, Dirichlet boundary conditions on density � and total energy E are enforced.
Where the inlet �ow is subsonic, a Dirichlet boundary condition is enforced on the transverse
linear momentum component m2; for an inviscid �ow, no boundary condition is required on
the axial linear-momentum component m1; for a viscous �ow, an inlet boundary condition for
the axial linear-momentum equation that can be prescribed is a vanishing surface traction �1jnj,
with �1j the components of the deviatoric Navier–Stokes stress tensor, a condition e�ectively
enforced by deleting the corresponding surface integral in the statement

∫
�
w
(
@m1
@t

+
@
@xj

(
m1mj

�

)
+

@p
@x1

)
d� +

∫
�

@w
@xj

�1j d�−
∮
@�

w�1jnj d�

+
∫
�

@w
@xi

� 
(
c(�aiaj + �NaN

i aN
j )

@m1
@xj

+ ai
@
@xj

(
m1mj

�

)
+ ai�

@p
@x1

)
d�=0 (13)

Where the inlet �ow is supersonic, Dirichlet boundary conditions are enforced on all the
components m1 and m2 of linear momentum.
With reference to decomposition (5) and Figure 1(a), the divergence of the convection �ux

with components fq
j within (11) is integrated by parts at a wall region, an operation that
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n

m

m

n

p (-n )

(a) (b)

Figure 1. Boundary regions: (a) wall; and (b) outlet.

yields the wall boundary statement

∫
�

[
w

(
@q
@t
+

@fp
j

@xj

)
+

@w
@xi

� 

(
c(�aiaj + �NaN

i aN
j )

@q
@xj

+ ai
@fq

j

@xj
+ ai�

@fp
j

@xj

)]
d�

−
∫
�

@w
@xj

fq
j d� +

∫
�

@w
@xj

f�
j d�= −

∮
@�

wqH m
�

· n d� +
∮
@�

wf�
j nj d� (14)

This statement features a wall surface integral that depends on the mass �ux (m=�) ·n. A wall
mass-�ux boundary condition is therefore directly enforced within this surface integral, with
a wall-tangency boundary condition obtained by setting the entire integral to nought. For an
inviscid �ow, this is the only boundary condition that is required at a solid wall.
For a viscous �ow, the two linear-momentum components in statement (14) are replaced

by the no-slip boundary conditions on m1 and m2. The wall mass-�ux surface integrals in
the continuity and total-energy components in this statement are then eliminated; the wall
heat-�ux integral in the energy equation

∫
�

[
w

@E
@t

− @w
@xj

(
mj

E + p
�

− ui�ij − k
@T
@xj

)]
d� +

∮
@�

w
(
mjnj

E + p
�

− ui�ijnj − k
@T
@n

)
d�

+
∫
�

@w
@xi

� 
(
c(�aiaj + �NaN

i aN
j )

@E
@xj

+ ai
@
@xj

(
mj

E + p
�

))
d�=0 (15)

with k the coe�cient of thermal conductivity, is then used to specify a heat-�ux boundary
condition, by inserting the prescribed heat-�ux @T=@n in this integral. For a cold- or hot-wall
boundary condition, the entire energy equation (15) is then replaced at each hot- or cold-wall
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arc by the wall surface integral∮
@�

w
(
p(q)
�R

− Tw

)
d�=0 (16)

where Tw denotes a prescribed wall temperature.
At a supersonic outlet, no boundary conditions are enforced for an inviscid �ow; for a

viscous �ow, the minimal-perturbation boundary conditions that are prescribed involve an
adiabatic outlet stream and vanishing deviatoric surface tractions �ijnj. The adiabatic-stream
condition is enforced by deleting the corresponding surface integral in (15); the vanishing-
traction condition is enforced by deleting the corresponding surface integral from the linear-
momentum statement

∫
�
w
(
@mi

@t
+

@
@xj

(
mimj

�

)
+

@p
@xi

)
d� +

∫
�

@w
@xj

�ij d�−
∮
@�

w�ijnj d�

+
∫
�

@w
@x‘

� 
(
c(�a‘aj + �NaN

‘ aN
j )

@mi

@xj
+ a‘

@
@xj

(
mimj

�

)
+ a‘�

@p
@xi

)
d�=0 (17)

A similar surface-integral procedure is employed at a subsonic outlet region to enforce spec-
i�ed boundary conditions on deviatoric surface tractions �ijnj and pressure p. With reference
to decomposition (5) and Figure 1(b), the divergence of the pressure �ux with components fp

j
within the momentum equations (17) is integrated by parts at an outlet region, an operation
that yields the out�ow boundary statement

∫
�
w
(
@mi

@t
+

@
@xj

(
mj

�
mi

))
d�−

∫
�

(
@w
@xi

p − @w
@xj

�ij

)
d� +

∮
@�

w(pni − �ijnj) d�

+
∫
�

@w
@x‘

� 
(
c(�a‘aj + �NaN

‘ aN
j )

@mi

@xj
+ a‘

@
@xj

(
mj

�
mi

)
+ a‘�

@p
@xi

)
d�=0 (18)

This statement features an out�ow surface integral that depends on the outlet-pressure speci�c-
force components pni, 16 i6 2. The outlet pressure boundary condition is therefore directly
enforced by specifying the prescribed outlet pressure for p within this surface integral. This
strategy for imposing an outlet pressure boundary condition remains intrinsically stable as
the following basic considerations on the linear-momentum equation for m1 indicate; similar
conclusions apply to the linear-momentum equation for m2. Consider �rst the case of an outlet
with n1¡0, which implies @w=@x1¡0 and m1¡0. If some computational perturbation induced
a decrease in m1 at the boundary, then ‖m1‖ would increase hence p from (6) would decrease,
which through the boundary domain integral of pressure in (18) would induce a restoring
increase in m1; similar stability conclusions would result by considering a perturbation increase
of m1 at the boundary. Consider the other case of an outlet with n1 ¿ 0, which implies
@w=@x1¿0 and m1¿0. If some computational perturbation induced a decrease in m1 at the
boundary, then p from (6) would increase, which through the boundary domain integral of
pressure in (18) would induce a restoring increase in m1; similar stability conclusions result
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by considering a perturbation increase of m1 at the boundary. The results in Section 6 con�rm
the accuracy and stability of this pressure boundary-condition enforcement procedure.

4. FINITE ELEMENT GALERKIN WEAK STATEMENT

Since the characteristics �ux divergence (4) is developed independently and before any
discretization, a genuinely multi-dimensional upstream-bias approximation for the governing
equations (1) on arbitrary grids directly results from a classic centred discretization of the
characteristics-bias �ux on the prescribed grid. To this end a Galerkin �nite element method,
[2–4], is employed to discretize in space the integral statement (11). This method not only ac-
commodates arbitrary geometries or generates consistent non-extrapolation boundary equations
for q, but also retains the ideal surface-integral venues of the integral statement to enforce
the boundary conditions described in the previous section.
The discrete solution qh, subject to prescribed boundary conditions, is sought within a

�nite dimensional subspace Hh1(�h) ⊆ H1(�) of dimension N , for all wh ∈Hh1(�h), where
superscript ‘h’ signi�es spatial discrete approximation, �h denotes the discrete computational
domain, and N indicates the number of computational nodes. The corresponding �nite element
statement associated with (11) is

∫
�h

wh

(
@qh

@t
+

@fh
j

@xj

)
d� +

∫
�h

@wh

@xj
f�h
j d�−

∮
@�h

whf�h
j nj d�

+
∫
�h

@wh

@xi
�h h

⎛⎝ch(�hah
i a

h
j + �Nh

aNh

i aNh

j )
@qh

@xj
+ ah

i

@fqh

j

@xj
+ ah

i �
h @fph

j

@xj

⎞⎠ d�=0 (19)

with similar expressions for statements (12)–(18). The approximation qh exists on a partition
�h, �h ⊆�, of �. Having its boundary nodes on the boundary @� of �, this partition �h

results from the union of Ne non-overlapping elements �e, �h=
⋃Ne

e=1 �e. Within �h, there
exist clusters of ‘master’ elements �M

k , each cluster comprising only those adjacent elements
that share a mesh node xk , with 16 k6N , where N denotes the total number of not only
mesh nodes, but also master elements.
As Figure 2 shows, the discrete test function wh within each master element �M

k will
coincide with the ‘pyramid’ basis function wk =wk(x), 16 k6N , with compact support on
�M

k . Such a function equals one at node xk , zero at all other mesh nodes and also identically
vanishes both on the boundary segments of �M

k not containing xk and on the computational
domain outside �M

k .
The discrete solution qh and �ux fh

j at each time t assume the form of the following group
linear combinations

qh(x; t)≡
N∑

‘=1
w‘(x) · qh(x‘; t); fh

j (x; t)≡
N∑

‘=1
w‘(x) · fj(qh(x‘; t)) (20)

of time-dependent nodal solution values qh(x‘; t), to be determined, and trial functions, which
coincide with the test functions w‘(x) for a Galerkin formulation; an analogous expression
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k ≡ i, j

wk= wk(x)

Figure 2. Pyramid test function for �M
k .

applies for f�h
j . Similarly, the �uxes fq

j =fq
j (q(x; t)) and fp

j =fp
j (q(x; t)) are discretized

through the group expressions

fqh

j (x; t)≡
N∑

‘=1
w‘(x) · fq

j (q
h(x‘; t)); fph

j (x; t)≡
N∑

‘=1
w‘(x) · fp

j (q
h(x‘; t)) (21)

The notation for the discrete nodal variable and �uxes is then simpli�ed as q‘(t)≡ q(x‘; t),
fj‘ ≡fj(qh(x‘; t)), fq

j‘ ≡fq
j (q

h(x‘; t)), fp
j‘ ≡fp

j (q
h(x‘; t)) and expansions (20) and (21) are

then inserted into (19), which yields the discrete �nite element weak statement

∫
�h

wk

(
w‘
dq‘

dt
+

@w‘

@xj
fj‘

)
d� +

∫
�h

@wk

@xj
f�h
j d�−

∮
@�h

wkf�h
j nj d�

+
∫
�h

@wk

@xi
@w‘

@xj
�h h[ch(�hah

i a
h
j + �Nh

aNh

i aNh

j )q‘ + ah
i f

q
j‘ + ah

i �
hfq

j‘ ] d�=0 (22)

for 16 k6N . There are three implied summations with respect to the subscript indices i; j; ‘.
The subscript indices i; j in this expression denote Cartesian-axis directions, hence 16 i; j6 2,
whereas subscript ‘ indicates a mesh node, hence 16 ‘6N , although a sum like

∑N
‘=1 w‘

dq‘
dt

only involves a few neighbouring terms because the compact-support test function w‘ is only
non-zero within a cluster of few neighbouring elements.
While an expansion like the ones in (20) for  h, �h, ch, ah, aN

h
and �h can be directly

accommodated within (22), each of these variables in this study has been set equal to a piece
wise constant for computational simplicity, one centroidal constant value per element. In this
study, the upstream-bias controller  h within each domain element has been set equal to 0.5,
which induces 50% less dissipation than a fully upwind scheme [6]. The term �h is set equal
to a reference length within each element, typically a measure of the element size. In this
study, �h=(�‘)e=2 within each element ‘e’. Since the streamline is a characteristic principal
direction, [1], the term (�‘)e is set equal to the length of the streamline diameter of the
generalized ellipse inscribed within the element.
Since the test and trial functions w‘ are prescribed functions of x, the spatial integrations in

(19) are directly carried out. For arbitrarily shaped elements, these integrations take place via
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the usual �nite element local-coordinate transformation that maps a quadrilateral into a square
[2–4]. In this study, the resulting coordinate-transformation metrics within each element are
set to the element-wise constant optimal metric data delineated in Reference [5]. This simpli-
�cation allows the exact integration of the remaining integrals, which are then evaluated only
once for each computation. Concerning the boundary variables, no extrapolation of variables
is needed in this algorithm on a variable that is not constrained via a Dirichlet boundary
condition. In this case, instead, the �nite element algorithm (22) naturally generates for each
unconstrained boundary variable a boundary-node ordinary di�erential equation. The complete
integration with respect to x transforms (22) into a system of continuum-time ordinary dif-
ferential equations (ODE) for determining at each time level t the unknown nodal values
qh(x‘; t), 16 ‘6N .

5. IMPLICIT RUNGE–KUTTA TIME INTEGRATION

The �nite element equations (22), along with appropriate boundary equations and conditions,
can be abridged as the non-linear ODE system

M
dQ(t)
dt

=F(t; Q(t)) (23)

where M≡ {wkw‘} denotes the mass matrix, M(dQ(t)=dt) indicates the corresponding cou-
pling of time derivatives in (22), and F(t; Q(t)) represents the remaining terms in (22). The
numerical time integration of (23) in this study takes place through a generalization of results
in References [5, 7–9] in the form of an alternative class of two-stage diagonally implicit
Runge–Kutta algorithms (IRK2) expressed as

Qn+1 − Qn = b1K1 + b2K2

MK1 =�t · F(tn + c1�t; Qn + a11K1)

MK2 =�t · F(tn + c2�t; Qn + a21K1 + a22K2)

(24)

where n now denotes a discrete time station. The algorithm is implicit because the deter-
mination of the Runge–Kutta arrays K1 and K2 requires solving systems of equations; the
algorithm is diagonally implicit because the determination of K1 does not couple K2. Thus,
given the solution Qn at time tn, K1 is computed �rst, followed by K2. The solution Qn+1 is
then determined by way of the �rst expression in (24). The terms b1; b2; c1; c2; a11; a21, and
a22 indicate constant Runge–Kutta coe�cients, subject to the constraints ci=

∑2
j=1 aij and∑2

i=1 bi=1. It is possible to select such coe�cients to achieve both high-order temporal ac-
curacy and non-linear absolute stability for arbitrary sti� non-linear ODE systems. In respect
of this integration, the innovative element in this paper involves the concept of non-linear
discrete-energy stability, the proof that algorithm (24) is absolutely non-linearly stable in
the discrete energy for the Euler and Navier–Stokes equations, and the veri�cation that this
author’s speci�c Runge–Kutta coe�cient set generates an absolutely energy stable algorithm.
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5.1. Non-linear stability and accuracy

The concept of non-linear stability of an implicit Runge–Kutta ODE solver fundamentally
refers to the capability of the Runge–Kutta equations (24) to generate a solution Qn that
emulates the time evolution of the time-continuum solution Q≡ qh for the time interval of
interest and general non-linear rhs F(·; ·). Algorithm (24) satis�es the non-linear energy
stability condition that the time-discretization does not contribute an increase in an energy
rate of change over an average energy rate of change of the time-continuum system. This
condition is expressed as

‖Qn+1‖2 − ‖Qn‖2
�t

6
d‖Q‖2
dt

(25)

where ‖:‖ denotes an inner-product norm, and overbar signi�es an average over the time
interval (t; t + �t). An energy rate of change of the discrete system, therefore, does not
exceed an associated average energy rate of change of the time continuum system. Algorithm
(24) can satisfy (25) regardless of the size of the time step �t, which implies unconditional
energy stability.
To describe how (24) satis�es (25), express the energy associated with the time continuum

solution Q of (23) as

‖Q‖2 = (Q;Q) (26)

With F ≡M−1F, the rate of change of this solution energy becomes a function of Q and the
rhs of (23) as

d‖Q‖2
dt

=2
(
Q;
dQ
dt

)
=2(Q;F) (27)

An average energy rate can then be expressed as

d‖Q‖2
dt

≡
s∑

i=1
bi
d‖Q‖2
dt

∣∣∣∣
Q=Qi

=2
s∑

i=1
bi(Qi; F(t i; Qi)) (28)

Since (28) has to represent a meaningful average, the weights bi, 16 i6 s must be non-
negative, which leads to the constraints

bi ¿ 0; 16 i6 s (29)

Based on (24), the array Qi in (28) is cast as

Qi ≡Qn +
s∑

j=1
�ijKj (30)

which corresponds to a �eld at the intermediate time level t i ≡ t+ ci�t ∈ (t; t+�t). Together
with (24) and F ≡M−1F, this form for Qi leads to the expressions

Ki=�tF(t i; Qi)≡�tFi; Qn − Qi= −
s∑

j=1
�ijKj= −�t

s∑
j=1

�ijFj (31)
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The Runge–Kutta algorithm (24) generates for the lhs of (25) the expression

‖Qn+1‖2 − ‖Qn‖2
�t

= 2
s∑

i=1
bi(Qi; F(t i; Qi))−�t

s∑
i; j=1

(bi�ij + bj�ji − bibj)(F(t i; Qi); F(t j; Q j)) (32)

which applies to non-linear expressions F(·; ·). This result features a discrete energy rate at
the lhs and an average time-continuum energy rate at the rhs. Capitalizing on this result, the
energy stability condition (25) then translates into the quadratic-form inequality

−�t
s∑

i; j=1
(bi�ij + bj�ji − bibj)(F(t i; Qi); F(t j; Q j))6 0 (33)

With {b̃ik} denoting the diagonal matrix with diagonal entries {bi}, this inequality can be
unconditionally satis�ed for any positive time step �t when the symmetric energy matrix

E ≡ {b̃ik�kj + �kib̃kj − bibj} (34)

is non-negative de�nite. Employing expressions (30) and (31), the energy result (32) emerges
from the square of the norm ‖Qn+1‖ as

‖Qn+1‖2 =
∥∥∥∥Qn +

s∑
i=1

biKi

∥∥∥∥2 =
(
Qn +

s∑
i=1

biKi; Qn +
s∑

j=1
bjKj

)

= (Qn;Qn) +
s∑

i=1
bi(Ki; Qn) +

s∑
j=1

bj(Qn; Kj) +
s∑

i; j=1
bibj(Ki; Kj)

= ‖Qn‖2 + �t
s∑

i=1
bi(Fi; Qi) +�t

s∑
i=1

bi(Fi; Qn − Qi)

+�t
s∑

j=1
bj(Qj; Fj) +�t

s∑
j=1

bj(Qn − Qj; Fj) +�t2
s∑

i; j=1
bibj(Fi; Fj)

= ‖Qn‖2 + 2�t
s∑

i=1
bi(Qi; Fi)

−�t2
s∑

i; j=1
bi�ij(Fi; Fj)−�t2

s∑
i; j=1

bj�ji(Fi; Fj) +�t2
s∑

i; j=1
bibj(Fi; Fj)

= ‖Qn‖2 + 2�t
s∑

i=1
bi(Qi; Fi)−�t2

s∑
i; j=1

(bi�ij + bj�ji − bibj)(Fi; Fj) (35)
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Table I. Runge–Kutta coe�cients.

b1 b2 a11 a21 a22

IRK2
3− √

3
4

1 +
√
3

4
3− √

3
6

2− √
3

√
3− 1
2

Crucially, the derivation of results (32) and (35) places no restriction on either the struc-
ture of the residual F(·; ·) or the semi-discretization employed. As a result, the diagonally
implicit algorithm (24) becomes unconditionally energy stable not just for a traditional linear
model problem, but for the full semi-discrete Euler and Navier–Stokes equations on arbi-
trary structured=unstructured meshes. Based on this result, the stability of a CFD algorithm
employing this implicit Runge–Kutta integration is chie�y determined by the upstream-bias
formulation, spatial discretization, and boundary conditions, which should collectively generate
a stable system (23) of ordinary di�erential equations in continuum time.
Owing to its symmetry, the matrix E in (34) is non-negative de�nite when all of its principal

minors remain non-negative. For an implicit algorithm it is possible to determine Runge–Kutta
coe�cients bi and �ij to satisfy this non-linear energy stability condition independently of �t.
The author’s speci�c Runge–Kutta coe�cients satisfy this stability condition and provide
second-order time accuracy (Table I). As documented in the Computational Results section,
the non-linear stability of this algorithm allows computations to progress stably for Courant
numbers in excess of 100.

5.2. Numerical solution

The terminal numerical solution is then determined using Newton’s method, which for the
implicit fully-coupled computation of the IRK2 arrays Ki, 16 i6 2, is cast as[

M − aii�t
(
@F
@Q

)p

Qp
i

]
(Kp+1

i − Kp
i ) =�tF(tn + ci�t; Qp

i )− MKp
i

Qp
i ≡ Qn + ai1K

p
1 + ai2K

p
2

(36)

where aij=0 for j¿i, p is the iteration index, and Kp
1 ≡K1 for i=2; the Jacobian

Ji(Q)≡M − aii�t
(
@F
@Q

)p

Qp
i

(37)

has been analytically determined and implemented, leading to a block sparse matrix. For all
the results documented in the next section, the initial estimate K0

i is set equal to the zero array,
while a Gaussian elimination is used with only one iteration executed for (36) within each
time interval. In this mode, Newton’s iteration becomes akin to a classical direct linearized
implicit solver.

6. COMPUTATIONAL RESULTS

The acoustics–convection upstream resolution algorithm has generated accurate essentially
non-oscillatory results for subsonic, transonic and supersonic �ows, encompassing oblique

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:1261–1286



ACOUSTICS–CONVECTION UPSTREAM RESOLUTION ALGORITHM, PART II 1275

and interacting shocks that re�ect exact solutions. The benchmarks discussed in this section
include four �ows: a subsonic �ow and a transonic �ow about a symmetrical aerofoil and two
supersonic intake �ows. In order to determine the coarse-grid performance of the algorithm
and ultimate accuracy of quadrilateral elements, each benchmark has employed a �nite element
discretization of Lagrange bilinear elements without any MUSCL-type local extrapolation of
variables; each resulting body-�tted grid consists of 40 bilinear elements in the transverse
and longitudinal directions, for a total of 1600 elements, 1681 nodes and 6724 degrees of
freedom. The computational e�ciency of the procedure has remained comparable to that of
a conventional centred algorithm for the characteristics-bias system, with upstream directions
continuously updated without any �ltering or freezing, with high-rate convergence of the
residual norm to machine zero.
For each benchmark, the calculations proceeded with a prescribed constant maximum

Courant number Cmax =110. Considering the de�nition of the Courant number,

Cmax ≡ max{‖u‖+ c; ‖u‖ − c; c} �t
(�‘)e

(38)

for prescribed (�‘)e and Cmax for each benchmark, the corresponding �t is determined as

�t=
Cmax(�‘)e

max{‖u‖+ c; ‖u‖ − c; c} (39)

All the solutions in these validations are presented in non-dimensional form, with pressure p
made dimensionless through the corresponding inlet stagnation (total) pressure.
The �rst computational test corresponds to a subsonic critical �ow about a 3% thick sym-

metrical aerofoil, with stretched grid illustrated in Figure 3.
The subsonic inlet corresponds to a subsonic free-stream Mach number M∞=0:87, hence

the inlet boundary conditions only constrain density �, transverse linear momentum component
m2 and total energy E. The outlet, consisting of both the downstream exit and upper side,
remains subsonic, hence static pressure is constrained at this boundary. At the lower surface,
the inviscid wall-tangency boundary condition is enforced according to the method delineated

x

y

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Figure 3. Aerofoil �ows: computational grid.
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in Section 3. A pressure drop is imposed upon an initially quiescent �eld and the �nal steady
state is computationally achieved by advancing the solution in time.
The Mach-number distribution and �ooded contours in Figures 4 and 5 portray a non-

oscillatory solution with sharply resolved drops in Mach number at the aerofoil leading and
trailing edges and undistorted capturing of a vanishingly small supersonic region over the
aerofoil surface, towards the trailing edge.
Despite the stretched grid, a similar essentially non-oscillatory �eld is portrayed in the

pressure distribution and �ooded contours in Figures 6 and 7. Although this distribution
indicates increased accuracy would result from a locally re�ned grid, the pressure peaks at
the aerofoil leading and trailing edges remain undistorted. In particular the calculated pressure
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Figure 4. M∞=0:87 aerofoil critical subsonic �ow, Mach number contours.

Figure 5. M∞=0:87 aerofoil critical subsonic �ow, Mach number distribution.
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Figure 6. M∞=0:87 aerofoil critical subsonic �ow, pressure distribution.

Figure 7. M∞=0:87 aerofoil critical subsonic �ow, pressure contours.

in the outlet region remains smooth and the calculated outlet pressure at the x=1:5 outlet
coincides with the imposed pressure boundary conditions, which re�ects favourably on the
surface-integral pressure enforcement strategy delineated in Section 3.
The second computational test corresponds to a transonic �ow about the same aerofoil. The

subsonic inlet corresponds to a subsonic free-stream Mach number M∞=0:87, hence the inlet
boundary conditions only constrain density �, transverse linear momentum component m2 and
total energy E. As in the �rst test, the outlet, consisting of both the downstream exit and
portions of the upper side of the grid, remain subsonic, hence static pressure is constrained
at these boundary segments. When the local Mach number exceeds one, the algorithm no
longer enforces an outlet pressure boundary condition. At the lower surface, the inviscid
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Figure 8. M∞=0:87 aerofoil transonic �ow, Mach number distribution.

Figure 9. M∞=0:87 aerofoil transonic �ow, Mach number contours.

wall-tangency boundary condition is enforced according to the method delineated in Section 3.
A pressure drop is imposed upon an initial �eld corresponding to the steady-state �ow of the
previous test and the �nal steady state is computationally achieved by advancing the solution
in time. The imposed pressure drop was selected to induce a supersonic region that extends
past the upper boundary, in order to test the capability of the algorithm to allow a captured
shock to cross a boundary with minimal re�ection.
The Mach-number distribution and �ooded contours in Figures 8 and 9 present an essentially

non-oscillatory solution with crisply calculated compressions and expansions, at the aerofoil
leading and trailing edges, and with a supersonic pocket terminated by a slightly curved sharp
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shock adjacent to the aerofoil trailing edge. In particular this shock is captured within two to
three nodes.
Despite the stretched grid, a similar essentially non-oscillatory �eld is displayed in the

pressure distribution and �ooded contours in Figures 10 and 11.
This distribution indicates increased accuracy would result from a locally re�ned grid.

Nevertheless, the pressure peaks at the aerofoil leading and trailing edges remain undistorted
and the slightly curved shock is sharply captured within two to three nodes. The calculated
subsonic distribution downstream of the shock remains smooth. In particular, the calculated
outlet pressure at the x=1:5 outlet coincides with the imposed pressure boundary conditions,
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Figure 10. M∞=0:87 aerofoil transonic �ow, pressure distribution.

Figure 11. M∞=0:87 aerofoil transonic �ow, pressure contours.
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which again re�ects favourably on the surface-integral pressure enforcement strategy delineated
in Section 3.
The next computational tests encompass two supersonic intake �ows. One of these �ows

involves an oblique shock re�ection case, with grid illustrated in Figure 12.
The supersonic intake corresponds to a free-stream Mach number M∞=2:40, hence the

inlet boundary conditions constrain density �, longitudinal and transversal linear momentum
components m1 and m2 and total energy E. The outlet remains supersonic, hence no boundary
conditions are enforced at this boundary. At the solid upper and lower walls, the inviscid
wall-tangency boundary condition is enforced using the method in Section 3. An initially
uniform supersonic M =2:40 shockless �ow is subject to a 5◦ de�ection by the lower wall
and the �nal steady state is computationally achieved by advancing the solution in time.
It is the wall-tangency boundary condition on the whole upper and lower boundary walls

that induces emergence of an oblique shock at the lower ramp initiation point, a shock that
propagates toward the upper wall and is then re�ected downward towards the outlet. Apart
from a minimal ripple con�ned to the ramp initiation point, a ripple in the Mach number
and pressure distributions presumably caused by the need for localized grid re�nement, the
Mach-number distribution and �ooded contours in Figures 13 and 14 present an essentially
non-oscillatory solution with crisply calculated incident and re�ected shocks. In particular,
the algorithm allows the re�ected shock to cross the out�ow boundary unperturbed, without
any spurious distortion. Signi�cantly, this computational solution mirrors the available exact
solution, with three juxtaposed plateaus connected by two oblique shocks. The calculated
Mach numbers in the plateaus downstream of the two shocks are M2 = 2:20 and M3 = 2:01;
the shock inclination angles are 	2 = 28:53◦ and 	3 = −31:12◦. Not only for Mach number and
shock angles but also for pressure do these computed results coincide with the corresponding
exact values.
A similar essentially non-oscillatory �eld is displayed in the pressure distribution and

�ooded contours in Figures 15 and 16. The incident and re�ected pressure shocks are crisply
calculated, with a re�ected shock that can cross the out�ow boundary without any spurious
distortion.
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Figure 12. M∞=2:40 shock re�ection, computational grid.
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Figure 13. M∞=2:40 shock re�ection, Mach number distribution.

Figure 14. M∞=2:40 shock re�ection, Mach number contours.

The last test case in this study involves the asymmetric interaction of two oblique shocks,
with grid illustrated in Figure 17. The supersonic intake corresponds to a free-stream Mach
number M∞=2:40, hence the inlet boundary conditions constrain density �, longitudinal and
transversal linear momentum components m1 and m2 and total energy E. The solid wall
speci�cation only extends to x=0:4; beyond this station, the upper and lower boundaries
correspond to outlets, to allow the re�ected shocks to cross the computational boundaries with
minimal further re�ection. The total outlet remains supersonic, hence no boundary conditions
are enforced at this boundary. At the solid upper and lower walls, only extending to x=0:4,
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Figure 15. M∞=2:40 shock re�ection, pressure distribution.

Figure 16. M∞=2:40 shock re�ection, pressure contours.

the inviscid wall-tangency boundary condition is enforced using the method in Section 3. An
initially uniform supersonic M =2:40 shockless �ow is subject to a 5◦ de�ection by the lower
wall and a 3◦ de�ection by the lower wall; the �nal steady state is computationally achieved
by advancing the solution in time.
The wall-tangency boundary conditions on the upper and lower boundary walls induce

emergence of two separate oblique shocks of di�erent strengths, shocks that propagate toward
each other, interact, and re�ect away from each other, towards the outlet. The minimal ripples
at the origin of the primary oblique shocks remain con�ned to the starting point of the
two ramps, ripples in the Mach number and pressure distributions presumably caused by the
need for localized grid re�nement. Nevertheless, the Mach-number distribution and �ooded
contours in Figures 18 and 19 present an essentially non-oscillatory solution with crisply
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Figure 17. M∞=2:40 shock-on-shock interaction, computational grid.
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Figure 18. M∞=2:40 shock-on-shock interaction, Mach number distribution.

calculated incident and re�ected shocks. Signi�cantly, this computational solution mirrors the
available exact solution, with four juxtaposed plateaus connected by four oblique shocks. Since
the ramp de�ection angles remain somewhat moderate and close to each other, the velocity
magnitudes and Mach numbers remain essentially constant across the slip line that originates at
the re�ected-shock intersection point. Nevertheless, the re�ected shock interaction rotates the
emerging velocity vector to the equilibrium angle of 2◦ with respect to the horizontal direction.
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Figure 19. M∞=2:40 shock-on-shock interaction, Mach number contours.
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Figure 20. M∞=2:40 shock-on-shock interaction, pressure distribution.

This angle corresponds to a de�ection of 3◦, across the lower re�ected shock, and a de�ection
angle of −5◦, across the upper re�ected shock. These calculated velocity and de�ection angles
mirror the exact values. The calculated Mach numbers in the plateaus downstream of the four
shocks are M2 = 2:20, M3 = 2:28, M4 �M5 = 2:08; the shock inclination angles are 	2 = 28:53◦,
	3 = − 26:90◦, 	4 = 29:52 and 	5 = − 30:15. Not only for Mach number and shock angles but
also for pressure do these computed results coincide with the corresponding exact values.
A similar essentially non-oscillatory �eld is displayed in the pressure distribution and

�ooded contours in Figures 20 and 21. The incident and re�ected pressure shocks are crisply
calculated, with re�ected shocks that can cross the out�ow boundary without any spurious dis-

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:1261–1286



ACOUSTICS–CONVECTION UPSTREAM RESOLUTION ALGORITHM, PART II 1285

Figure 21. M∞=2:40 shock-on-shock interaction, pressure contours.
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Figure 22. Convergence rate: (a) shock re�ection; and (b) shock interaction.

tortion. In particular, the algorithm allows the re�ected shocks to cross the out�ow boundary
essentially unperturbed, without any spurious distortion.
For all the �ow cases discussed, the algorithm has rapidly calculated a steady state, as

exempli�ed by Figure 22 for the shock re�ection and interaction problems.
These curves document the high-rate convergence rate of the algorithm, with a reduction

of the residual norm to 1 × 10−14, hence machine zero, achieved in about 45 cycles ‘C’at
a constant maximum Courant number in excess of 100. The recorded essentially monotone
decrease of the residual is seen to correspond to an exponential convergence rate.
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7. CONCLUDING REMARKS

The characteristics-bias procedure detailed in this two-paper series generates the upstream bias
at the di�erential equation level, before any discrete approximation, within a characteristics-
bias system associated with the Euler and Navier–Stokes equations. Along all the in�nite
directions of wave propagation, the formulation induces anisotropic and variable-strength con-
sistent upwinding that correlates with the spatial distribution of characteristic velocities.
A classical �nite element Galerkin discretization of the characteristics-bias system is then

used for the spatial approximation. The developments in this investigation have implemented
the algorithm using a bi-linear approximation of �uxes within quadrilateral four-noded cells
without any MUSCL-type local extrapolation of variables, to generate a computationally e�-
cient algorithm and determine the ultimate accuracy of bi-linear resolutions.
This formulation has also developed an e�cient strategy to enforce wall-tangency and static-

pressure boundary conditions. This strategy has been validated by the computational solution
�elds, which remain undistorted. The time-dependent discrete equations are then integrated in
time via an implicit Runge–Kutta procedure with analytically determined Jacobians. This pro-
cedure remains non-linearly stable for the Euler and Navier–Stokes equations and a�ords rapid
convergence to steady states, with continuously updated upstream directions and maximum
Courant number exceeding 100.
Relying upon the physics and mathematics of multi-dimensional characteristic acoustics

and convection, the acoustics–convection upstream resolution algorithm generates an intrin-
sically multi-dimensional upstream approximation for the Euler and Navier–Stokes equations
for general equations of state. Coupled with a classical �nite element discretization and fea-
turing a computational simplicity that parallels a traditional centred discretization, even on
relatively coarse grids the algorithm rapidly generates solutions for subsonic, transonic and
supersonic �ows, solutions that both remain essentially non-oscillatory and re�ect reference
exact solutions.
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